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ABSTRACT

This thesis deals with the computer simulated, elastic link model

of an automobile cam actuated valve train. Examined are the dynamic

responses to sruch situations as: valve bounce, pushrod bounce,

excessive cam speed, cam surface machining errors, and cam profiles.

The model is adaptable to various types of mechanisms and lends itself

well to the incorporation on a computer graphics display.
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1. DgroopucrioN

The study of cam actuated valve train mechanisms has been undertaken

in the last thirty years from many different approaches. The mechanism

has often been dissected to observe various; local responses with the

remainder of the mechanism considered as external to the local point of

interest

.

Some history of past work undertaken will help to demonstrate the

usefulness of the results to be presented later in this thesis.

Of basic interest to those dealing with valve train mechanisms

is what role does the cam profile play on the over-all response of the

system. Dudley [1] , [2] examined the design of cam profile by use of the

valve output- This technique was carried out also by Thoren, Engemann,

and Stoddart [3] who included experimental results based on observations

of various engines and cam designs. More recent analysis has been done

by A, R. Johnson [4] . Jolmson dealt with a numerical application of

Newton's Fundamental Interpolation Formula to look at a multi-degree of

freedom system. Again the idea was to take the desired output and relate

it in terms of the input. The above references are significant for they

reaffirm the importance of the output being a dominant factor to the design

of a cam.

Historically there has been a large amount of controversy over the

best cam for design purposes. Three types of cams: parabolic, harmonic,

and cycloidal often have been studied and compared to each ether in terms

of displacement, velocity, acceleration, and jerk [5] , [6] , [7] , [8] , [9]

.





Polydyne cam profiles with their added flexibility have become

popular. They can easily be adapted to sets of conditions which may be

imposed by the mechanism [1] , [2] , [4] , [10] , [11] , [12] , [13] , [14]

.

The problem here is that the cam may be over designed, in other words, it

may be too exactly defined to be manufacturable

.

In addition to those mentioned above, references [15] , [16] , and [17]

present other methods of obtaining a cam profile. As can be seen there is

a wealth of information to the cam designer to aid him in obtaining a cam

profile, provided he has the necessary input data.

The ability to analyze a particular cam profile's effect on a system

can be of great benefit. Experimental results are the best, but also the

costliest. In addition, experimentation is best utilized if it can be

compared with theoretical results. This can give indications of existing

conditions which may not have been considered previously.

The ability to produce a model of a mechanism provides the chance to

obtain a balance of varied information for analysis. Models have the

same deficiencies as the human brain, i.e., they consider only a portion

of the existing conditions. They are often simplified and are programmed

to fit a situation as the person establishing the model sees it. This

procedure can be less than perfect as can be pointed out by experimental

results. On the other hand, it serves as a good guideline and usually can

be handled, revised, and adjusted more easily than a laboratory set up.

Models have been used extensively in the investigation of cam actuated

systems. Most of the work has been done by the classical method of

mechanics, i.e., a free body diagram with force analysis, [1], [2], [9],

[18] , [19] , [7] , [20] . The technique used is to set up the free body diagram





and solve the resulting differential equations. Graphical application

to solve for acceleration, velocity and displacement polygons can also

be used [21]

.

The above references usually employ a mechanism that behaves properly,

i.e. , the cam and pushrod stay in contact and problems such as pushrod

bounce, valve bounce, impact loads, cam machine surface errors are not

considered, or are considered alone and not in connection with each other.

Barkan and McGarrity [20] did consider impact loads on takeup of initial

cam clearances, and R. C. Johnson [22] studied the impact force in a

system using finite mass and "infinite mass assumptions. First he calcu-

lated the forces between two bodies of finite mass. Next he assumed one

of the bodies, the driving element, to have an infinite mass and calculated

the force for this case. In this way he obtained a range of expected impact

force values. Rothbart [7 J in Cnapter 8 and Neklutin [23], [15] provide

insight into the problem to be expected with vibrations internal to a

mechanism. Mitchell [5] also considered the interaction of cam profiles

with the resonance set up at the natural frequencies of the n"echanism.

Rothbart, Chapter 10 [7] gives expected dynamic results of cam surface

machining error and the response to the system.

One of the best and most comprehensive studies of valve train dynamic

response is that of Barkan [19] . He established a valve train mechanism

which he compared to experimental results. His model was developed by

the technique of lumped parameters. The lumped masses were connected by

massless springs of rigidity determined by the particular components.

Included in the mechanism was internal and external viscous damping. Forces

caused by internal combustion and by the valve spring were externally

applied to the mechanism.
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Differential equations used in solution of Earkan's mechanism were

solved by an integration technique using successive time increment evalu-

ations. This type of solution technique is also demonstrated in Rothbart

[15] page 240, and Timoshenko and Young [24].

R. C. Winfrey [25] adapted matrix algebra to the solution of the

equation of motion developed in mechanism analysis. This, coupled with

the calculation ability and speed of a digital computer, reduces the amount

of labor involved in the arithmetic to a much more elementary level. The

technique for obtaining the equations is that developed in Rubinstein ' s

text [26]

.

Applying the tool, matrix algebra, to the model which will be described

later gives the potential of studying many features of a mechanism response

when subjected to various operating situations. The attempt is to produce

a simplified, adaptable model which can examine not only the ideal situations,

but also the response to abnormal or undesirable circumstances

.

This thesis deals with situations which should not occur on normal

valve train systems. This is done to Impress the reader with the capa-

bilities of the model. Examined will be impact loads, valve bounce, pushrod

bounce, excessive cam speed, machining errors, and cam profile. The model

is capable of giving a voluminous amount of data to pinpoint response

analysis. It is adaptable to various types of mechanism analysis and lends

itself well to the possibility of being incorporated on a computer graphics

display.

11





II . THEORETICAL MODEL AND APPLICATION
OF EQUATIONS OF MOTION "

The model shown in Figure 1 is a simplified adaptation of the valve

train system of an automobile engine. It consists of a cam, pushrod or

cam follower, rocker arm, valve stem, valve spring, and valve seat. The

rocker arm pivots on the rocker. It is pinned to the pushrod at one end

and to the valve stem at the other end, thereby restricting all members

to remain in contact. The valve spring is assumed to have a spring

constant of 245 pounds per inch, is connected at the pin to the rocker

arm and valve stem at one end and is fixed to ground at the other end.

ROCKER

a

PUSKROD

\\\V

Jli>'
1

5

|1

£j_ J, SPRING
VALVE STEM

Ml

Z^ - U li_

VALVE SEAT (OPTIONAL)

CAM (Q

FIGURE 1. BASIC MODEL
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The mechanism is acted on at one end by the cam in contact with the

pushrod or cam follower. On the other end the valve may be acted on by

the valve seat. The model is further simplified by each member having

a constant circular cross section.

The valve seat position is adjustable, dependent upon the desired

output. It is identified by a dashed line in Figure 1 signifying that

it is not always simulated in the system. For some applications the

valve is allowed to move freely, unimpeded by the valve seat.

A. EQUATIONS OF IOTI0N

The equations of motion,-

[M]{q} + [C]{q} + [K]{q} = {F} (1)

were adapted to the model. The coefficients of the mass, stiffness arid

'damping matrices were determined by the finite element technique [26]

.

x. pys cem v^corGmaces

The system coordinates were established. . as shown in Figure 2

.

It was assumed that these coordinates accounted for all relevant energy.

A linear model (i.e., small deformations) was also assumed. In this

way tension and compression forces were all that were considered in the

pushrod, valve stem, and spring, and only the bending forces in the

rocker arm.

]
->





l

q
2 q5 T

q/

q-

q-

FIGURE 2. SYSTEM COORDINATES

2. Element Coordinates

Figure 3 gives the element breakdown of the system with the

corresponding element coordinates. Again it is noted that elements 1,

4 and 5 (i.e./ the pushrod, spring, and valve stem) are treated as

axial members and elements 2 and 3 (i.e., the rocker arm) are treated

as bending members. The rocker arm was divided into two elements to

better represent the bending motion at the pivot.
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FIGURE 3. ELEMENT COORDINATES

^ ' System Mass and Stiffness Matrices

The system coordinates / {q}, are related to the element

coordinates, {u} by a transformation matrix [S] as shown in Equation 2.

{u} = [3]{q} (2)

[3] is formed by applying the condition of compatibility to the mechanism,

and it is evaluated in Equation 3 for the model of Figures 2 and 3.
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u
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u.

J
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%

(3)

As noted in Equation 3, [3] is partitioned into sub-matrices according

to elements. Equation 3 may thus be rewritten in a more concise form,

{u}

{u}

<! {u}

{u}

{u}
J

[3]

[3]

[3]

[3]

[3]

{q} .

(4)

Utilizing the transformation matrix [3] and the procedure of Chapter 7

of reference [26] the system mass and stiffness matrices, [M] and [K]

,

were formed.
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As shewn in the reference, [3] relates the stiffness and mass properties

of the elements to the stiffness and mass properties of the system.

[K] =2 [3] J
[K ] . [3L

i = l
(5)

[M] = I [3] . [Ml [3]

i = 1 1 e 1 1
(6)

TH
[3] . is the submatrix of [3] corresponding to the i element. Simi-

TH
larly, [K ] . and [M ] . are the i element stiffness and mass matrices.s ' e 1 e 1

The element stiffness matrices are given by [25]

.

[K ] .
=

e 1

E. A.
1 1

cUiU

[K ] .

e 1

E. I.
1 1

L. 3

1

1

1

and the element mass matrices are:

1

1

(i = 1/4,5)

12 -12 6L.
1

6L.
1

-12 12 -6L.
1

~6L.
1

6L.
1

-6L.
1

4L. 2

1.

2L. 2

1

6L.
1

-6L.
1

2L. 2

1
4L. 2

1

(7)

(3)

(i = 2,3)

M.

IMJ i
2

-1

-1

2

(i = 1,4,5) (S)
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And,

M.

[M ] .

e 1 420
56 54 22L.

l
-13L.

l

54 156 13L.
l

-22L.

22L.
l

13L.
l

4L. 2

l
-3L.

l

13L.
l

-22L.
l

-3L. 2

l
4L.

l

(i = 2,3)

(10)

In the above equations, E. is the elastic modulus, A. is the cross

TH
sectional area, L. is the length, and M. is the total mass of the i

element.

a. Stiffness Matrix

Evaluating Equation 5 for IK] gives Equation 11 (see page 19)

b. Mass Matrix

Matrix multiplication of Equation 6 yields for the system

mass matrix, Equation 12 (see page 20)

.

4. System Damping Matrix

The system damping matrix is formed in two steps. First, the

equation of motion without damping is uncoupled and is written in terms

of modal coordinates. Next, by the use of the diagonal matrices of the

normalized equation of motion, the damping matrix can be developed.

a« Equation of Motion in Terms of Modal Coordinates

Rewriting the equation of motion, Equation 1, without

damping yields:

[M]{q} + [K]{q] = {F} (13)
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E
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% L
l

E
1
A
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E
1
A
1

6E
2
I
2
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l

L
l

+12E
2
I
2

V
6E

2
T
2

6E
2
I
2

4E
2
I
2 ^2

12E
3
I
3

-6E3I3 -6E3I3 E
5
A
5

L, 3

+EsA,

5

+E
4
A
4

Jj.5

-6E3I3 4E
3
I
3

2E
3
I
3

T 2L
3

L
3

L
3

6E2h 2E
2
X
2

-6E
3
I
3

2E
3
I
3

4E3I3

V L
2 V L

3
L
3

+4E
2
I
2

L
2

E
5
A
5

L
5

Vs
L
5

(11)

19





[M] =

\ -M
l

3 6

"*L
M
1
156M

2
22M

2
L
2

-13L
2
M
2

6
t-

3 420
420 420

22L
Z
M
2

420

4L
2
M
2

420

-^2
420

156M
3
M
4

-22L3M3 I3L3M3 -M
5

420 +
3 420 420 6

3

-22^3
420

4L2M^3^3
420

"3L
3
M
3

420

| 3L m
3"3

/It. 2m
Z'2

420 420 420 420 420

-K. M
l

(12)

20





Having the mass and stiffness matrices, the eigenvalue

problem may be solved using Equation 14.

(w 2 [M] - [K]){q} = {0} (14)

This gives a solution of seven eigenvalues, w. (i=l,2,...7), and seven

corresponding eigenvectors or mode shapes , { <J» } . . Arranging the

eigenvectors in columns,

[$] = [{*}
1

{$)
2

{*}
3

($)
4

($)
5

{$)
6

{*}
?

] (15)

gives the modal matrix, [$>] , which may be used as a coordinate transfor-

mation matrix to uncouple Equation 13. This gives the equation of motion

in terms of the modal coordinates,

Mil) + fKj{n) = {F
n }, (16)

where {F } is the modal force vector, and [M] and [Kj are the diagonal,

or uncoupled, mass and stiffness matrices related to [M] and [K] by,

EM] = [$]
T

[M] [$] (17)

[iQ = [0]
T

[K] [*] • (18)

(n) and (n) are a set of system modal coordinates related

to the system coordinates {q} and {q} by,

{q} = [4]{n) (19)

{q} - [•]{!»'} (20)

b. Formation of [C]

Having fM] and fK] , fCj can be formed and [C] solved for by

matrix manipulation and multiplication.
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k
ii

The eigenvalues, to. , equal \ / —— with k. . and m. . equal

to the diagonal elements of [Kj and [M] , respectively. The modal system

is assumed to have viscous damping, so that the values on the diagonal

of [C] , c.
.

, are related to k. . and m. . by,
' 11 11 11 2

c..=2c- i/k..m. . , (i = l,2,...7) (21)n *i V li n

where c • is the damping ratio . The damping ratio , c , of the fundamental

mode was set equal to 0.5 and the other six modes of higher frequency

were set equal to 0.1.

The system damping matrix [C] can now be found from [Cj as

follows

:

Thus,

L*^J — L'i'J 1>-J L*J \«-W

[C] = [aV'CCH*]" 1 (23)
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III. ADAPTATION OF MDDEL TO PROBLEM SOLUTION

The model established in Figure 1 and the equation of motion

established in Section II can now be used to examine dynamic reactions

of the model to applied situations.

There are; two coordinates of the model acted upon by external forces:

coordinate one end coordinate seven. Coordinate one is the displacement

of the point on the pushrod which comes in contact with the cam, and

coordinate seven is the displacement of the point on the valve which

comes in contact with the valve seat. Depending on the value of the force

and displacement at these two coordinates, the model can exist as one of

four possible configurations; (1) contact between the cam and pushrod and

no contact between the valve and valve seat; (2) no external contact at

cam or valve seat; (3) contact between cam and pushrod and valvp and valvn

seat; and (4) contact between valve and valve seat and no contact between

cam and pushrod. These four configurations will be referred to as con-

figurations I through IV, and will be described in more detail shortly.

The model will fall into one of the above configurations at all times,

but will remain in any configuration only as long as the physical con-

straints of the model are satisfied. Certain coordinate values, listed in

Table I, are monitored to indicate when the model shifts from one configu-

ration to another. As an example, at coordinate one the force, F.

,

between the cam and pushrod must have a negative value. The negative value

is due to the choice of the direction of coordinate one and the fact that

the cam can only push on the pushrod and cannot pull. Therefore, in the

solution of F, , if the value changes from a. negative to a positive value

the mechanism is no longer, acting within its constraints and

23





TABLE I

CONFIGURATION RELATIONSHIP

CONFIGURATIONS
CONTACT

COORDINATED KNOWSfS

MONITORED
VALUES

(Pushrod)

ql'ql' ql
= Cam F

l'q7
Profile
F. - i - 2,3,. ..7

II None !\ = i = 1,2,... 7 q±
rq

7

III 1,7

(Pushrod
and Valve)

ql'ql'ql
= CajTl F

l
/F

7

Profile
q_ = Valve Seat

Position

q7 ,q^ =
17 'M7

i = 2 ,3 , ...

6

rv

(Valve)

q„ = Valve Seat q, ,F„

Position

q? ,q?
=

F. = i = 1,2, ...6
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must shift to another configuration, in this case configuration II,

which allows for no external forces. The value of F.. will remain equal

to zero until the pushrod comes back in contact with the cam.

The equations of motion for the four configurations differ slightly

from one another. The rearrangement of the basic equation of motion,

Equation 1, for each configuration is such as to take advantage of the

known values of coordinate displacement, velocity, acceleration, and

force for that particular configuration. The known values for each con-

figuration are given in Table I. The adaption of the equation of motion,

Equation 1, to each configuration and the solution technique are given

in Appendix A. As can be seen in Appendix A, each configuration has a

set of equations having the same form as Equation 1. This solution is

done by the integration procedure described in Appendix B. An

explanation of each configuration follows.

A. CONFIGURATION I

This is the basic configuration. In this configuration, contact is

between pushrod and cam only. Each of the examples studied later begins

in this configuration. The force at coordinate one and the displacement

at coordinate seven, are monitored to determine when the model is to

shift into configuration II or III .
•

1. Force at Coordinate One

Due to the selection of the direction of coordinate one, the

force must be negative for any contact. A positive value for F, , indi-

cates a shift to configuration II, free of external forces. The value

of the force at F
]

is obtained from the first row of Equation 1.

7

F
l
=

? ,

(mlA + C
liqi

+ k
liqi ) (2G)

i = l

2 c





2. Displacement at Coordinate Seven

The value of q_ is monitored in those problems in which a valve

seat is considered. The valve seat is simulated as having a particular

position and when interference between the valve and valve seat occurs

the model shifts to configuration III, contact at both the cam and valve

seat.

B. CONFIGURATION II

In this section the model is in the free or "floating" state. There

are no external forces on the model and it moves freely based on its

natural frequencies and its initial conditions when it assumed this con-

figuration. The valve spring acts on the system as an internal member

.to bring the system back in contact with the valve seat or cam. The

monitoring ox q, and q_ indicates which contact * happens j-irst.
.1. i

1. Displacement at Coordinate One

q, is monitored against the position of the cam. When inter-

ference occurs between the cam and pushrod, the model shifts into

configuration I, contact between cam and pushrod.

2. Displacement at Coordinate Seven

q_ is monitored against the position of the valve seat and when

it exceeds the valve seat position the model shifts to configuration IV,

contact between valve and valve seat.

C. CONFIGURATION III

In configuration III, both the cam and valve seat are in contact.

This configuration may be thought of as a cross-over configuration. The

model will not remain in this configuration as long as it does in the

26





other three configurations. The model entars configuration III from

configuration I or IV. In configuration I, the model has been in con-

tact with the cam and in configuration IV, the model has been in contact

with the valve seat.

Since the model is elastic, it will shortly lose contact at one of

the two contact points, Viewing Figure 1 it can be seen that when the

valve is in contact with its seat, and the cam comes in contact with the

pushrod, the end result will be to quickly push the valve away front the

seat, and hence transfer to configuration I. VJhen the pushrod is

running on the cam and the valve comes in contact with the seat, the end

result will be to lift the pushrod away from the cam and transfer to

configuration IV.

The two external force values, F, and F_ are monitored.

1. Force at Coordinate One

The force at coordinate one is monitored in the same manner as

configuration I. When F, shifts from a negative to a positive value,

the pushrod loses contact with the cam and the model shifts to con

configuration IV.

2. Force at Coordinate Seven

The force at coordinate seven is monitored by solving the last

row of Equation 1.

7

F- = E (m_.q. + c-.q. + k_.q.) (27)
7

: as l ' 1 x 71^1 71*1

Due to the selection of the direction of coordinate seven, when the value

of F_ changes from positive to negative , contact at coordinate seven has

been lost and the model shifts to configuration I.

27





D. CONFIGURATION IV

Configuration IV indicates contact at the valve and valve seat only.

The values q, and F_ are monitored in the same manner as previously

described and indicate when the model shifts to configuration III or II

respectively

.

Figure 4 gives a schematic of the four -configurations, their

relationship to each other, and the coordinate values monitored between

any two configurations.
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CONFIGURATION III

Contact Both
Cam-Pushrod

Valve-Valve Seat

CONFIGURATION I

Contact
Cam-Pushrod

CONFIGURATION IV
Contact

Valve-Valve Seat

CONFIGURATION II
No External
Contact

Values on diagonal lines are monitored to determine when to shift to

another configuration.- Arrow indicates direction of shift.

FIGURE 4. INTERRELATIONSHIP OF CONFIGURATIONS
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IV. IMPACT FORCE ANALYSIS

A. BACKGROUND

Impact in the model occurs when the cam and pushrod or valve and

valve seat come together. Impact forces are difficult to predict accu-

rately and most often are studied from an elemental standpoint, i.e.,

two idealized masses impacting with smooth surfaces and relatively

simplified geometry.

Background investigation to determine the manner of handling impact

forces in model analysis does not yield much useful information for this

thesis. The cam was assumed to be an infinite mass with its velocity

unchanged by ."Impact. As was explained in Chapter I, this assumption was

one of the two used by R. C. Johnson [22] to predict a range of values

for impact. Timoshenko and Goodier [27] also studied colliding members.

The above references dealt basically with two masses and did not consider

an elastic mechanism with interacting members. Of prime interest was the

local deformation and stresses produced at point of impact, whereas in

this thesis, deformation of the entire system is taken into account

rather than local deformation.

Barkan and McGarrity [20] mention impact forces in a valve train

system, but only from the standpoint of the takeup of initial clearance

between cam and pushrod. Once their system began to operate there was

no later separation.

Dubowsky and Freudenstein , [28] , [29] , also deal with the problem of

clearances, in mechanical systems. They developed a dynamic model for

their study and examined the system response. Their study deals with

clearances at pins and points of connection and does not deal with the

effect of large impact forces on a system.
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Thoren, Engemann, and Stoddart [3] did consider valve bounce as

related to the design of cam contours. They conducted laboratory studies

of different types of valve trains and with different cam profiles. They

did not set up an analytical model for a valve train, and did not consider

the effects of such situations as pushrod and cam separation and impact.

In addition, they were mainly interested in valve displacements and did

not measure contact forces.

B. l^DDEL IMPACT FORCE CALCULATIONS

The integration technique of Appendix B used in the solution of the

equation of motion finds displacement, velocity, and acceleration over

successive time steps, AT. Figures 5, 6, and 7 give idealized curves of

q and q for a particular coordinate which undergoes a sharp change in

its displacement profile, q. This produces a step input to the velocity

curve and an impulse to the acceleration profile. Figures 8, 9, and 10

are the modifications to the idealized case which are necessary to

account for the modeling limitation of Appendix B. Changes can only

occur during an integration interval, AT.

Figure 8 is identical to Figure 5. Differentiation of the displace-

ment yields Figure 9 for the velocity curve. As shown it takes one time

step to reach the step input value in Figure 6. Differentiation to

obtain acceleration yields Figure 10. It takes two time intervals to

account for the impulse in Figure 7 and reduce the acceleration curve

again to zero. The value of acceleration at time t~ is given by the

equation

,

• • •

q = q /AT. (28)
to t 2
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q = A't,

time

FIGURE 5. Ideal Disolacement Curve

time

CO

FIGURE 6. Ideal Velocity Curve

time

FIGURE 1 . Ideal Acceleration Curve
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q = A-t

Hi-~ «

V2

q.= .A/ATL2*

FIGURE 8. Model Displacement Curve

AT = t
2

- t^

FIGURE 9. Model Velocity Curve

AT = t
3

- t
2
= t

2
- t

x

Ws
FIGURE 10. Model Acceleration Curve
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Note also, that due to the value of q , which will usually be
^2

fairly high since AT is small, the value of F , the force at the
t
2

coordinate in question, can be significantly higher than F or F ,

t
l

fc
3

This is to be expected at the instant of impact.
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V. RESULTS

Figures 11 and 12 are the numerical values of the [M] and [K] matrices

respectively. These were obtained by first substituting the values of

Table II into Equations 11 and 12 to get the mass and stiffness matrices

[M] and [K] .

MASS MATRIX [M]

15.5 -7.8 0.0 0.0 0.0 0.0 0.0

-7.8 z.3 .

2

1.1 0.0 0.0 -.6 0.0

0.0 1.1 .2 00.0 0.0 -.1 0.0

0.0 00.0 0.0 20.1 -2.4 1.4 -2.6

0.0 0.0 0.0 -2.4 .6 -.5 0.0

0.0 -.6 -.1 1.4 -.5 .9 0.0

U . U
A r\

0.
1 r

FIGURE 11

xlO" 5

STIFFNESS MATRIX [K]

2.4

2.4

0.0

0.0

0.0

0.0

0.0

2.4

25.2

11.5

0.0

0.0

11.5

0.0

0.0

11.5

7.6

0.0

0.0

3.8

0.0

0.0 0.0

7.1 0.0

FIGURE 12

0.0

0.0 0.0 11.5

0.0 0.0 3.8

13.8 -5.1 -5.1

-5.1 5.1 2.5

-5.1 2.5 12.7

0.0

0.0

0.0

0.0

7.1

0.0

0.0

7.1

xlO 1
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TABLE II

Element Length (L) Inches Diameter (D) Inches

1 O A
-j_ .s • «~ • O

2 1.0 .6

3 1.5 .6

4 36.0 .07

5 3. .3

FOR ALL MEMBERS

Elastic Modulus = 30 x 10 6 lb/inch2

Specific Weight = .283. lb/inch 3
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With the mass and stiffness matrices formed, the eigenvalue problem

was solved and the damping matrix [C] obtained, Figure 13.

DAMPING MATRIX [C]

92.3 37.7 3.7 21.0 2.9 -4.5 6.0

37.7 217.2 33.1 67.6 -18.6 26.5 -10.7

3.7 33.1 20.2 7.2 -3.2 .1 -.5

-21.0 67.6 7.2 178.0 -37.0 -.9 83.1

2.9 -18.6 -3.2 -37.0 -27.6 -7.7 -10.0

-4.5 26.5 .1 -.9 -7.7 48.9 4.6

6.0 -10.7 -.5 83.1

FIGURE

10.0

13

4.6 95.7

xlO-2

Figure 14 gives the numerical values of [<3>] and the values of the

seven natural frequencies, u. , in radians per second. [$] is arranged

in Figure 14 so that each eigenvector {$}. is listed bela// its related

natural frequency w .

.

25.9

EIGENVALUES w , xlO 3

n

1070.2 • 736.5 247.1 521.9 146.7 .691

EIGENVECTORS IN COLUMNS [$]

17.7 -.1 -9.4 -.5 .3 .6

-8.1 -.2 -8.7 -.8 .6 .9

11.8 7.5 9.5 5.5 -9.6 -2.9

15.4 .2 -1.2 2.5 .7 2.6

15.4 4.4 -4.4 12.7 8.1 -3.1

.6 4.2 5.7 -6.7 4.1 3.0

16.6 .1 2.5 2.3

FIGURE 14
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In the solution of the equations of motion by the technique shewn

—6
in Appendix B, the time increment, AT, was I x 10 second. This value

was chosen so as to be approximately one fourth the period of the mode

having the highest frequency. If a value of AT was chosen close to one

of the natural periods., the solution would become unstable and quickly

diverge

.

Figures 15 through 32 show the results of different problems run on

the model. The problems were designed to test each of the four configu-

rations in which the model could exist. The cam profile was assumed to

be harmonic with no dwells, and 1" peak to peak. There are four basic

types of operating situations.

1. Contact maintained between cam and pushrod at all times without

considering valve seat. In this situation the model could only exist

in Configuration I.

2. Cam speed increased so that the pushrod no longer remains in

contact at all times with the cam. No valve seat. In this case the

model will exist in Configuration I and II.

3. Valve seat employed in the system. The cam rotated at a slow

enough speed so that the pushrod would remain in contact with cam if the

valve seat were not in the system. The model utilizes all four

configurations

.

4. A combination of 2 and 3 above. The valve seat is employed and

the cam is run at a high enough speed for the pushrod to lose contact

with the cam. Again all four configurations are employed in the model.

The Figures 15 through 32 are graphs of the displacement and force

curves at the contact coordinates. There are two graphs for each problem

in Section A and B. The first graph will show the cam profile ar ' the
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pushrod profile. The second graph will be the curve of F
1

, the force

between cam and pushrod. Included on this graph for those problems

employing a valve seat will be the curve of F„, the force between valve

and valve seat. The only deviation from this will be the problem run

at 20000 RPM without a valve seat. In this instance the pushrod profile

was plotted on the same graph as the force profile. This was done to

show the comparison of dynamic responses of force and displacement at

one ' coordinate . For section C, Figures 33 through 41, the graphs are

plotted to show the most interesting features in terms of force and/or

displacement of the particular problem. It should be noted that the

values plotted are done at intervals of one degree which is much larger

than the integration interval, AT, This gives a good representation of

.the overall force and displacement responses with one exception -

impact force values. Impact forces occur for only one integration

interval, AT, and therefore do not always get plotted.

A. WITHOUT VALVE SEAT

1. 9000 RPM - Figures 15 and 16

Figure 15 shows the puslirod-cam profile curve and Figure 16 the

curve representing the force between the cam and pushrod. As can be

seen, the value of F, remains negative. As has been stated previously,

unless the value of F, changes signs from negative to positive, the

pushrod-cam profile curves will be superimposed on each other.

2. 9524 RPM - Figures 17 and 18

In Figure 18 the force reaches the zero value indicating sepa-

ration of the pushrod and cam. Again it is noted that the value of F^

can go no higher than zero for the cam cannot pull on the pushrod. Thej -

fore, the flat part of the force profile indicates the length oi - me i—

-
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cam and pushrod are not in contact. The cam and pushrod are not in

contact for approximately 50 degrees. When the two come back in contact,

the force oscillates and is damped out by the internal damping of the

system. Figure 17 shows the cam and pushrod profiles to be superimposed,

but in actuality they should be separated for the same period of time

that the F, curve of Figure 18 is equal to zero. The pushrod is lifted

such a short distance from the cam surface that it is not distinguishable

in Figure 17. This separation of cam and pushrod will be shown more

effectively in Figure 19 for 11000 RPM.

3. 11000 RPM - Figures 19 and 20

To compare with 9524 RPM and show a general trend of mechanism

response the cam speed is increased to 11000 RPM. The pushrod gets

thrown from the cam for a larger fraction of the cycle, about 180 degrees,

shown on Figure 20, and is thrown further on Figure 19. It should also

be noticed that the two curves are not superimposed on each other. This

also happens in the 9524 RPM situation, but the separation was not great

enough to be distinguished. The third feature of this problem is that

upon coming back in contact with the cam, the pushrod bounces on the

cam and again loses contact for a period before it finally cares in

contact to remain. This is indicated, by the separation of the pushrod-cam

profile curves and also by the flat portion of the F, curve.

The response of the system to ever increasing cam speed can now be

predicted. As the speed increases the pushrod will be thrown off the

cam surface and the mechanism will remain in Configuration II, free of

external forces, for longer periods of time. Also, as the speed

increases, more and more bounces of increasing magnitude take place.

addition, the impact force of collision between the two will

42





o-
NI

09 "0- 09*0- DQ -T- 0^
D

T- QKT-
dHIJGHa Hb3 ( H I !Ni lil N jHQDG 1U N3W33I

43





D^
U

D- 9-0- GQ "0- DOT-

44





o

oo
c

oo
-CM

h—
cr

x:—

s

^H

(jCH
o Ll

o LxJ

B cr
03 (JD

: i
j-5r-

|

jZ_..

o

cc

oo

oo
t

cm

oo
t-o

a.
cr

ooo

H
En

°o- 09-0- 08 "0- 00 "T- 0^"T1
- Or:

31 litiNJ 1

1

45





LD

D V '

crxM

o
D

Q)-»

to p ~^

0)

o

o

O

e

ooo

o

fa

Cp
v

C CB
U

D OCT no • rU o i

SGNflDd Ni 3NQ "Jlb'Hi'nyDQQ id 33yQd

46





4. 20000 RPM - Figures 21 and 22

In this case it can he seen that once the pushrod loses contact

with the cam it never does come back in contact to remain. What takes

place is a continuous bouncing as the pushrod and cam come in contact

and the pushrod is thrown off again. The period of time that the two

do remain in contact is the time of take up of system inertia before the

pushrod is thrown off again.

B. WITH VALVE SEAT INCLUDED

Next a valve seat will be included in the system. Upon impact, q_

and q7 are solved by the technique explained in Chapter IV, and the force

between the valve and valve seat, F„, is evaluated by Equation 27. q_

takes one time step, AT, to reach a value of 0. q7 takes one time step

to reach the value (q_ - q-, ) /AT and another- time step to reach the
t

7
tc

2 -1

value of zero. This means that F_ at time t„ will usually be higher than

the value at t-. or t, . Again this is to be expected at the moment of

impact.

1. 1000 RPM - Figures 23 and 24

As shown in Figures 17 and 18, until the cam reaches about

9500 RPM, the pushrod will remain in contact with the cam if the model

does not include a valve seat. Therefore, at 1000 RPxM with a valve

seat, any loss of contact between the cam and pushrod will be caused by

the valve seat interference and not as a result of excessive cam speed.

Figure 23 represents the response of the pushrod to the valve

seat interference. Figure 24 gives the force at coordinate one, F, ,

and the force at coordinate seven, F- . On Figure 23 the cam and pushrod

profiles are superimposed until the valve comes in contact wit i
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seat. This contact is transferred through the mechanism and the pushrod

is pulled from the cam surface. In Figure 24 the upper curve is of F,

and the lower curve is of F„. Notice that during the period of contact

at the valve only, F_, oscillates and F, is equal to zero. The reverse

takes place when the cam comes back in contact with the pushrod. F,

oscillates and F_ goes to zero. The force curves contrasted against

each other give the best representation of the particular point or

points of contact of the mechanism. When either force curve equals zero

this indicates no contact at that particular coordinate. In addition,

as will be shown for faster cam speeds, bounce of both the valve and

pushrod takes place and is identifiable on the force curves.

2. 5000 RPM - Figure 25 and 26

This is a faster version of the previous example. The force

curves are of interest due to the oscillation upon impact. In this

case, as evidenced by the additional flat areas on the F, and F_ curves,

there are bounces of the pushrod and valve after impact. Also of

interest in Figure 25 is the indication of the increased oscillation of

the displacement of the pushrod after separation from the cam.

3. 9000 RPM - Figures 27, and 28

Everything stated previously is even more in evidence at this

speed. Figure 28 indicates several bounces of the pushrod and valve

after impact. The oscillation of q1
on Figure 27, after the pushrod

loses contact, is more pronounced.
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4. 13205 RPM - Figures 29 and 30

The speed is above 9500 RPM so it can be expected that the valve

seat and excess speed will have interacting effects on the model. Of

interest is what happens first when the system is floating free of

external forces - will the cam come in contact with the pushrod before

the valve comes in contact with the valve seat?

The pushrod first loses contact with the cam due to the action

of the valve on the valve seat. The cam and pushrod come back in contact,

the force F, oscillates, and the pushrod bounces and is finally thrown

free. At just before 460 degrees, as shown by Figure 30, the valve comes

in contact with the valve seat. Just after 480 degrees the pushrod also

comes in contact with the cam and the system is subsequently thrown free

again. In this case when the system is floating free of external forces

the valve seat comes back in contact before the pushrod.

5. 20000 RPM - Figures 31 and 32

The pushrod again first loses contact due to the valve seat

interaction, comes back in contact with the cam, and is thrown free again.

From then on the system resembles that shown on Figure 21 since the valve

does not come in contact with the valve seat again. The pushrod continues

to bounce on the cam at such a height that the valve does not reach the

position of the valve seat.

C RELATED PROBLEMS OF INTEREST

The previous examples have shown the more routine results obtainable

with the model. Figures 33 through 41 are graphs of some of the additional

situations imposed on the model for examination.
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1. Machining Error

Figure 33 represents what happens due to a small machining error

on the cam surface. The error was beteeen 268 degrees and 272 degrees.

The value of cam displacement was assumed constant and the cam velocity

and acceleration taken equal to zero. The best indication of the results

of the flat space is given by the oscillation of the force profile. On

all graphs data points were plotted every degree. For this reason, this

graph does not indicate the complete response. When the pushrod comes

up to or goes off the flat space it hops off the cam surface for a small

period of time, about .75 degrees, and then comes back to the cam surface.

This should be indicated on Figure 33 by the force going to zero. Since

this occurs between successive data points it does not get plotted on

the graph. The oscillation of the force at coordinate one on Figure 33

indicates problems that could be associated with several machining errors

on the same cam surface. The machining error here is 0.0003 inches.

2. Undamped at the Lowest Natural Frequencies - Figure 34

Figure 34 is the force between the cam and pushrod, F, , for the

model without damping. This graph substantiates the value of the lowest

natural frequency, 691. radians/sec. or 6602.5 RPM, of the undamped model.

This value from Figure 14 was obtained by solution of Equation 14 for

the eigenvalue problem. At the resonance frequency of 6602.5 RPM it

takes very little force above the static value to cause the mechanism

to operate. As can be seen on Figure 34 the force oscillates about

10 pounds.
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3. Polydyne Cam Profile - Figures 35 and 36

Up to this point all the cam profiles have been harmonic, with

no dwell, and represented by .5 sin (tot) inches with w equal to the

value of cam speed in radians per second. Polydyne cam profiles are

quite popular and this next example examines different responses of the

mechanism to polydyne profiles.

There are several references that are good on development of

polydyne cam profiles, (4), (10), (11), and (12). It is not the intent

here to develop this theory, but just to outline how the profile was

set up for solution on the model.

Basically all that is needed for model input is q, , q, , q , and

q, . With this in mind a polynomial equation,

q n
= CA + C n 9 + C Q 2 + C o

3 + C.Q 4 + C^Q 5 + C,G 6 + C~0 7
, (29)^1012 3 4 i> b /

was written with G equal to the angle of rotation of the cam in degrees.

« **

Differentiating for q , q, , and q gives,

a, = C + 2C^G + 3C n
2 + 4C„Q 3 + 5C CQ

1+ + 6C rQ
5 + 7C„0 6

, (30)

q = 2C
2
+ 6C Q + 12C

4
G 2 + 20C

5
Q 3 + 300^ + 42C

?
Q 5

, (31)

q = 6C + 24C
4
G + 60C

5
Q 2 + 120C

6
Q 3 + 2100^ . (32)

The initial conditions were taken to be q^, q^, and q1
equal to

zero at the beginning and end of the stroke. The value of q1
at the

beginning and end of the stroke would be specified. The one restriction

placed on this situation was that the pushrod was not allowed to leave

the surface of the cam at any time regardless of the value of the force

at coordinate one.
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Taking equal to zero as the beginning of the stroke/ C,, C
,

and C
3
are seen to be zero due to the initial values of q , q , and q ,

C equals the initial value of q, and thus Equations 29 through 32 may

be written in matrix form.

VS

<

ql

0'

40 3

240

p>5

50 4

oG

60 5

120 2 20O 3 300^

0'

70 E

40 5

600 2 1200 s 2100^

(33)

The unknown coefficients, C., Cr/ Crf and C_ can now be solved
4 t> b /

for by substituting q, = q, , and q, = q, = q, =0, the values at the

end of the stroke, into Equation 33.

<

^i'f " c
o

(34)

s

where q, |p indicates the value of q, at the end of the stroke. Using

Equation 34 and the value of at the end of the stroke in Equation 33,

C., C r , Crl and C„ can be found. With C
.

, CL, C,, and C„ known, the
4 o b / 4 b b /

* • •

values of q, , q, , and q, can now be solved for at any time within the

stroke. A similar solution for a 345 polydyne profile can be made.
* •

However, only the initial and final values of q.,, q,, and q, need be

defined

.
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Figure 35 shows the basic cam profile for both the 4567 profile

and the 345 profile. Figure 35 also gives the response of the valve

displacement q to each of these profiles. Both cam profiles were taken

to open in 90 degrees, to dwell for 90 degrees, to close in 90 degrees,

and again to dwell for 90 degrees. This, in effect, simulates the

inclusion of another cam at coordinate one so that the pushrod follows

precisely the profile of the cam at all times, no matter what the value

of F
1
might be.

Figure 36 gives an example of the response of the system when

the amount of dwell is changed. A 4567 profile is simulated. The first

run has a 90, 90, 90, 90 degree profile as previously described, but the

second run takes 45 degrees to open, dwell for 45 degrees, close in

225 degrees and dwells for 45 degrees. Again this figure gives both

cam and valve profiles.

4 . 1500 RPM - Figures 37 to 41

It is of interest to examine the relative deflections of indi-

vidual members of the mechanism for the harmonic cam previously used,

q = .5 sin tot.

Figures 37 to 39 represent the amount of deformation undergone

by the model members during one particular operation. Figure 37 repre-

sents the axial deformation of the valve stem. Figure 39 indicates the

amount of bending undergone by the rocker arm.

Figures 40 and 41 are the force and displacement graphs for

15000 RPM in the same manner as shown previously.
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On Figure 41 at about 850 degrees it is shown that both the cam

and valve seat have come in contact with the mechanism. Careful exami-

nation shows that the cam contacts prior to the valve. In the length

of time it takes for the system to take up the inertia and be thrown off

the cam again, the valve also comes in contact with the valve seat. It

should be noted that 15000 RPM is between the 13205 PPM value of cam

speed where it was noted in Figure 29 that the valve hits the valve seat

before the pushrcd hits the cam and the 20000 PPM value of cam speed

where the value never comes back in contact with the valve seat. As can

be seei in Figure 41 for 15000 RPM sometimes the valve does come in

contact, i.e., 850 degrees and at other tines it doe not, i.e., 500

degrees and 1250 degrees.

70





r\!

CZ)

1. • {a, .

s-i r-s, i

ft AatA

ft- C.

''Or

taiu"

FIGURE 37. 15QGQ RPM :^UE

71





en
i

CD—

1

CD
x: CD

tc
en ~—\

LfD

J- rx

<n

LU
_3

I

cr.

13

CD

uZ3

h— CD

U_ VI-

ED!

<n

CD

I— CD
!r

UU L.

in
ED

CD
CD

TP
i

3C

CD
— . CD
n-

iD^

C3 I

z, a Q-QQ b, C ... a, .

per'1 '

Utl

"v"

C3 FIGURE 38. 15QDQ RPM UflLA

72





(TV
|

O
-—\

x: 1ID
__, ^D

CO
od
UJX
CD
11 CD
1—

1

CD

21 CO
1—

1

CO
UJ
x: CD

ED CD

cr
r "

3 FIGURE 39. 15000 RPM ^ -U

-7 "5





<
to

>

>
KHM

O
Oo

o

w

oM

o
_p

I

H

O
O

H o

4

^-^n
CD

03

O
CD

L

LlJ

LlJ

o

X.J

03 O

P
P

,p
>P

r LjJ

-e-

o
a) rt

> w
h a
n3 O
> o

•U
cj n)

[CO O

e o
|H Pm

f

00 "I

0VA\
V

DD^O- 1 OO'l- 00
U

V- D0
U 9- 00 ^G

SWIOd Nl 3NQ 3IUNi'DHDDG iU 3^iU'D

J

00*0V
f orwi

00 "££ 00'\^ 00 "91 00 -Q- 00 "D

HHGc H[ H-
' 3iUHrGtlDD3 1U 31 dD

J

74





09 "G p -n 00 "T 0Z 0P"T
saHDra: rci htucxh wvo am sko ar^cccrciooo jh ;ra\3DYiasici

75





VI. CONCLUSIONS

An elastic link model has been developed and the equation of notion

redefined to fit the external application of forces at two coordinates.

This model has been used to study the gross effects of action taken by

the model as it is fitted into different loading situations. The solu-

tion of the equation of motion was carried out by an integration

technique

.

One of the problems associated with the model as now defined is that

it does not take into account the propagation velocity of elastic waves

in the structure. This gives some internal disturbances due to the fact

that seme of the high frequency mode shapes travel faster through this

mathematical model than they would through an actual model. This is best

evidenced by the initial increase .in force between the cam and pushrod

when the valve strikes the valve seat. A computer printed output of the

action at coordinate one at the moment of impact at coordinate seven shows

that there is at first a reduction in F, , but that subsequently, before

the pushrod is pulled away and the force goes to zero, it increases. An

examination of Figures 23 to 32 indicates an initial increase in the

negative value of the F-, curve before it is brought to zero with the

separation of the cam and pushrod. This is due to the events occurring at

one end being "felt" at the other end of the mechanism in one time step.

The high frequency mode shapes will reach peak value in the model prior

to pushrod-cam separation. This occurrence is slight and happens in a short

period of time, (depending on the speed, but it is measured in milliseconds)

and the overall effect of the pushrod lifting from can surface is still

not affected.
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Another area of interest, which was not examined, was that of

accounting for all parts of the model separating from each other. This

would involve internal forces and would probably best be solved by

working with the element, vice the system coordinates.

The effect of clearance can be incorporated along the same lines as

mentioned above. As of now the only clearances that can be incorporated

are at coordinate one and seven.

As the model now stands it gives a good indication of the effect of

impact, machine error, cam speed, and valve placement on the action of

the different members in the system. It could be argued that seme of

the forces obtained on impact would rapidly tear the mechanism apart.

There is no counter argument to this except to state that the intention

is to show the cause and immediate effect in terms of force experienced

by the system. It should be noted that: all runs are at a very high

speed and therefore, subject the model to very high forces. Interpre-

tation of the large forces on impact, the oscillations of force, and

the amount of bounce of one element on another, is part of the reason

for setting up such a model.

Many of the design criteria for a good valve train have been violated

in order to demonstrate the potential of the model. The model is well

adapted to examine features that should not occur in a good valve train

and graphically demonstrates what will happen in terms of force and

displacement responses if they do occur.

The model is also extremely useful in examining a system that appears

to be operating sufficiently well. Force oscillation in high speed

mechanisms can be a problem which will not normally become evident until
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material fatig"ue appears. The mechanism does not have to run improperly

to have large force oscillation. Figure 33 for the machining error

gives a good indication of this.

It is felt that the model in its present configuration can give an

overall picture of system response. With relatively slight modification

the model can be made to represent a specific mechanism and give

individual response characteristics.
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APPENDIX A

MATRIX MANIPULATION OF EQUATIONS OF MOTION FOR

DIFFERENT SITUATIONS OF PROBLEM

A. CONTACT AT CAM AND CAM FOLLOWER ONLY

In the basic equations of motion

[m^Hq,)* [cijHq.} + [k..]^.} = {F.} (35)

where (i = 1,2,... 7) and (j = 1,2 ,...7).

F, is unknown and F~ - F_ are known and equal to zero, q, , q,

,

and q, , equal the value of displacement , velocity and acceleration of

the cam.

Equation 35 can be expanded and partitioned to take advantage of

the known values.

Expanding and partitioning Equation 35 yields,
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(36)

Removing the top equation for F, , Equation 36, the set of remaining

equations can be written,
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The full set of equations can be rewritten as Equation 3 8 and 39.

F.. = l (iru.q. + c, .q. + k
n .q.)

1 . , li"i li^i li^i
1 = 1

(38)
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{m.^ + [m.
k]{q.}

+ {cy^ + [Cjk){4j>

(39)
+ {k^lq^^ + [k

jk]{q.}
= {0}

where (j = 2,3,. . . ,7) (k = 2,3,. . . ,7) .

Rearranged, Equation 39 can be rewritten as,

[m
jk

]{q.} + [c
jkH qj

} + [k
jk]{q.}

- {p.} (40)

where

(Pj> = - {ra^} q±
- {c } q±

- {k } q±
(41)

and (j = 2,3, ... ,7) (k = 2,3, ... ,7) .

This set of equations can now be solved by the numerical integration

technique outlined in Appendix B, to yield {q.} , {q.}, {q.}, where

(i = 2, 3,..., 7). With these values and kncrwina a. . a, and a-, F, can be

found.

B. NO CONTACT

In this case all the forces are known to equal zero. The basic

equation of motion is left as is,

[lY-Hq..} + [C.
j
3{4i

} + [k
ij

]{q
i

] = {0}
.

(42)

where (i = 1,2,..., 7) (j = 1,2,... ,7).

Equation 42 is solved by the technique of Appendix B to yield {q . }

,

{q.} and {q.} where i = 1,2,... 7.
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' C. CONTACT AT THE CAM AND VALVE SKAT

The equation (35) is partitioned one step farther than for part A,

for in this case F„ is not known, but q_ equals the value of the valve

seat and q7 and q7 equal zero. Again as in part A, F„ - F
fi
are known

to equal zero, F, is unknown, and q, , q, , and q-. equal the values

associated with the cam profile. Equations 43, 44, 45, and 46 are

formed in the same manner as part A, i.e., expanding, partitioning,

and rearranging Equation 35.

F
l = l HA + C

liql
+ kHqi J (43)

1 = 1

7

F
?
= Z (rn^q. + C

7i
q. + k

7i
q.)

(44)1=1

[m
jkHqj

} + [°jkHqj
} + [k

jkJ(qj
}
= iP

j
} (45)

where j = 2 , 3 , ... 6 and k = 2 , 3 , . . . 6

,

and {P.} = -{ffl.
1>q1

- {m.
7
>g. 7

- {c^
7
)q

7
- ^j^! - {k..

7 }q7
- {c^}^

(46)

Again the matrix equations can be solved by the technique of

Appendix B to find {q.

}

,{q. } , and {q. } , (j = 2,3, . . . ,6) . F
±
and F

?
can

then be solved by Equations 43 and 44.
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D. CONTACT E2IWEEN VALVE AND VALVE SEAT ONLY

• • •

In this case F_ is not known, q_ and q are equal to zero and q_

is equal to the valve position. Expanding, partitioning, and rearranging

Equation 35 yields Equations 47, 48, and 49.

7

F_ = E (iru.q. + C-.q. + k_.q.) (47)
7 . , 71*1 7l^i 7l^i

1 = 1

[m
jk

]{q.} + tc
jk

]{ qj
} + [k

jk]{qj}
= {Pj) (48)

where (j = 1,2, ... ,6) (k = 1,2, ... ,6) .

and {P,} = -(nWi, - {c.-}q- - {k.-}q- . (49).} = -{m.
?
}q

7
- {c^

7
>q

7
- {k.

?
}q

7

Appendix B is used to solve the matrix equations and find {q. }, {q.},

{a.}, (j = 1,2,... ,6) . F_ is then solved by Equation 47.

'J
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APPENDIX B

INTEGRATION ALGORITHM

A. DEVELOPMENT

This algorithm is developed to solve the equation of motion,

[M]{q] + [C]{q} + [K]{q} = {F} (51)

by using a step by step time integration technique. This involves a

choice of a function to represent how the acceleration changes within

the time step T.

Assume that, q. (t) = f . (t) (52)

where i = 1 to the degree of freedom.

T < t < T + AT

Integrate for velocity and displacement;

q±
(t) = /f

±
(t)dt + C^ = gi

(t) + C^ (53)

q.(t) = /g.(t) + Cl^.t + C^ = h.(t) + C^t + C
Di

.

(54)

Express q. (t) , q. (t) and q. (t) in terms of q. (t) evaluated at

adjacent time step end points.

T-3 T-2 T-l T T-l T+2 T+3

The undetermined coefficients of f , (t) are expressed in terms of

acceleration values at time step end points. The results are substituted

into the equation of motion. This yields an algorithm which relates

values of acceleration at adjacent time steps.
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Assume a linear acceleration function within each time step. This

yields an adaptation of Newmark's method of integration to matrix algebra.

'*n+l

T + AT
n+1

/"n+1 "vis

"n (q
i " qi )

Acceleration = q. (t) = q. + — tni ^1 AT
(55)

/'n+1 "n v «
(q. - q. ) ,2

Velocity = q . (t ) = q* + qft + X ^ X
§- (56)

,"n+l *'n N -,

n *n -n 2 ^i " ^ t
3

Displacement = q.^ (t) = qi
+ q^t + q^ ^

+
at 6~ (57)

Evaluate q. (t) and q. (t) at time t = AT,

'n+1 'n "n AT , "n+1 AT
qV + qV

f- + qi 2
(53)

n+1 n
,

«n .„
q. = q. + q. AT + q.

•n (AT)
2

. "n+1 (AT)
2

+ qi 6
(53)

Let a.
l

•n
,

n AT
q. + q. -^~ (60)

. n n ,
*n n (AT)

and \b. - q. + q. l>T + q. —5

—

ri ^1 ^1 ^1 J
(61)

Now q
1

? and q. can be rewritten:
^1 1

*n+l n
,
"n+1 AT

q . = a . + q .
^~

^1 1 -1 2
(62)
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n+1 ,n+l , "n+1 (AT)
q. =

ty. + q. —?— (63)

Substitute the above results for q?
+1

and q
1?*1 into Equation 51,

[M] {q
n+1

} + [C](a
n

} + f[C]{q
n+1

} + [K]{*
n

> + i^[K] {qfh = {p }.

(64)

Rearranged

,

[M] -1- — [C] + -^L[K]

rJi+l-i r "n+l, r
-n+l.

/n+1,
{q }

Rewritten, [iJT
1

] {q
n+i

} = {p
n X

} ,

{p
n+1

> ~ [C]{a
n

} - [K]{^
n

}

(65)

(66)

where {p } = {F} evaluated at time n+1.

UP"!] = [M] + Ifrffl S^M

,-n+l-
{p
n^} = {p

^
} - [CHa

n
} - [K]{*

n
> (68)

B. ALGORITHM

1. Step 1

The initial conditions can be determined from Equation 51

evaluated at time equal to zero,

[M]{q°} + [Cj{q°} + [K]{q°} = {F°} .

Any two of{q}, {q}or{q} may be specified and the third solved for

by the above equation.
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2. Step 2

Substitute the initial condition values into equations 60 and 61,

, n. 'n, AT r "*n,{a . } =
{qi

} + ^g^

{<£> = (qj) + AT{q*} + i|5L_ {q
»

}
n =

3. Step 3

Set up [m" ] from Equation 67,

[5P
+1

] = oft + f[<*] + fV] .

Note that [M ] , [C ] , and [Kj matrices may depend on motion values and

this may require modification during analysis. For linear problems,

i.e., this model, [m ] , [C ], and [K ] remain constant and [M] is only

computed once.

4. Step 4

Solve for {P} from Equation 68.

{
p>?

+1
} = {p^

1
} - [cHcA - [K]{^>

5. Step 5

From Equation 66 solve for {q. } .

'n+1, r.-.n+l,-l r^n+1-

{qf
X

} = tiF
1 ]-1

{if
1

}
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6 . Step 6

* n+1 n-t-1
Evaluate {q } and {q } from Equations 62 and 63,

,'n+l n,
r

'"

n+:i
-i AT

{q£ ) = {a
i ) + (q

i
) y-

,•1*1. n+1
r
"lH-l. (AT)

2

{qj- } = (a
i } + {q,. } -g

7. Step 7

n+1 n+1
Evaluate {a } and {ty } by Equations 60 and 61.

, n+1,
r
-n+l, , . n+1, AT

la } = {q. } + {q. } ^r—

2
r .n+1. , n+1, , r'n+l,.™

, r
"n+l, (AT)

H } = lq. } + iq }AT + {q. }
-^

8. Step 8

Let n equal n+1. Go to step 3 and reiterate for

r "n+l, r'n+1, -, r
n+1,

{q^ )r (q^ ) snd {q J •
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